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The aim of this paper is to present a self-contained introduction to the Hubbard model and some of its applications. The 
paper consists of two parts: the first will introduce the basic notions of the Hubbard model, starting from the motivation for its 
development to the formulation of the Hamiltonian, and some methods of calculation within the model. The second part will 
discuss some applications of the model to 1D and 2D systems, based on a combination of the author’s results and those 
from the literature.  
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1. Introduction 
  
Physics, and all other natural sciences, have at least 

one point in common: they have to find a way to 
determine the characteristics of the objects they study. 
Generally speaking, this is done in various kinds of 
experiment. Performing an experiment means putting the 
system under study in interaction with some kind of 
external probe, and then measuring the response of the 
system. If the interaction of the system under study with 
the external probe is weak, and if the particles constituting 
the system interact mutually weakly, the response of the 
system will be a linear function of the interaction strength. 
Such a situation is called the one electron picture in solid 
state physics. Many useful results have been reached in 
solid state physics using this picture. 

What happens if the particles making up the system 
are correlated, or interact strongly with the external probe? 
Such materials were discovered in the last century; very 
well known examples are organic metals and high 
temperature superconductors. In materials like these, the 
one electron picture cannot be applied, and a new 
theoretical approach is needed. A typical shape of the 
temperature dependence of the resistivity of normal metals 
is presented in Fig. 1, taken from [1]. The same curve for 
the organic conductors is represented in Fig.2 [2]. Clearly, 
the curves in the two figures are not of the same shape, 
and cannot have the same theoretical explanation. The 
electrical resistivity of metals is theoretically modelled by 
the scattering of electrons by phonons. Already, early 
attempts to explain the resistivity of organic metals by the 
same physical process gave large discrepancies between 
the theoretical and experimental temperature dependencies 
of the resistivity of these materials [3].   

Apart the introduction, this paper has two further 
sections. The second is devoted to basic notions 
concerning the Hubbard model, while the third deals with 
some selected applications of this model.   

 
Fig. 1. A typical shape of the temperature dependence of 

the resistivity of  normal 
metals [1]. 

 

 
Fig. 2. Typical experimental resistivity-temperature plots for 

several organic metals [2]. 

__________________________ 
♣Paper presented at the International School on Condensed Matter Physics, Varna, Bulgaria, September 2008 
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2. The Hubbard model  
   
2.1 The basic notions 
 
Around the middle of the last century, one of the “hot 

topics” in solid state physics was the phenomenon of the 
metal-insulator (MI) transition. Mott developed a theory of 
MI transitions and showed what influence particle 
correlation can have on the results of the one electron 
picture [4]. Attempts to develop a microscopic model of 
the MI transition were important in the development of the 
Hubbard model (HM).   

The main “building block” of the HM is a collection 
of atomic orbitals, and the main physical assumption is the 
idea of tight binding. Translated into common language, 
this means that the wave function of an electron is 
centered on the lattice site of an ion, and that any electron 
can “hop” one lattice spacing at a time.  

Denoting the orbitals by �
�

 where � � [1,m], there 
can be of three different kinds:  

Non-degenerate: � =1,2 Such models are discussed 
in detail in [5],and they have only spin degeneracy. The s  
orbital is a typical example. 

Degenerate: � =1,2,..m and m=2 (2l+1). The symbol 
l denotes the orbital angular momentum quantum number. 
Orbitals of this kind can be p,d,.. 

Multiple bands: In this case, several degenerate 
bands are combined.  

The basic “description” of a model in statistical 
physics is its Hamiltonian. The Hamiltonian of the HM is 
given as the sum of two terms: the “free” kinetic term H0 
and the “interaction” term HI . 
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and the symbol K  denotes the summation over the 
nearest neighbours. The hopping amplitude is given by the 
following expression: 
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In Eq. (3), V(x) denotes the crystal ion potential felt 

by a single electron, while �  is an atomic orbital in an 
atom at a lattice site i, and �  is an orbital in an atom at site 
j. The interaction term has a more complicated form:  
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Expressions of the form <…|..|..> denote the matrix 
elements of the Coulomb interaction between electrons on 
different lattice ions.  

It can be expected that the most important role in the 
interaction term will be played by the electrons in orbitals 
on the same ion. In order to facilitate the applicability of 
Eq. (4), Hubbard introduced considerable simplifications: 
he took into account only the matrix elements in which 
i=j=k=l and assumed the existence of only one orbital. 
After these simplifications, the interaction term in the 
Hamiltonian takes the following form: 
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The kinetic term can be expressed as: 

 
μνμνμν δδ ijijij tTT += 0   (7) 

 
 

The second term in Eq. (7) is non-zero when the ions i 
and j are nearest neighbours. Assuming that T0=0, which 
amounts to a choice of a gauge, and allowing for n.n. 
hopping only, the Hamiltonian of a one-band Hubbard 
model becomes 
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In one spatial dimension, the Hubbard Hamiltonian 

takes the following form: 
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Symbols of the form +

σ,ic  denote second quantisation 

operators creating an electron at a lattice site i  having a 
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spin σ , while ↑in  is the number operator for the number 
of electrons at an ion at a lattice site i  having spin up.  

The Hubbard model in 2D is mathematically much 
more complex. The Hamiltonian in this case has the form 
[6]:  
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The Hubbard model may seem relatively simple, 

judging by the form of its Hamiltonian. However, it is only 
apparently simple. Although nearly 60 years have passed 
since it was proposed, this model has been exactly solved 
only for the 1D case [7]. Results concerning low 
dimensional systems are very sensitive to details of the 
problem. For example, it was shown in [8] that the ground 
state of one dimensional systems is unmagnetized, 
assuming that the hopping is between nearest neighbours. 
Relaxing this assumption, and allowing for next-nearest-
neighbour hopping, gives rise to the appearance of 
ferromagnetic properties [9].   

 
   
2.2. Methods of calculation  
         
Imagine that the Hamiltonian H of a many-body 

system is at some sufficiently remote moment in the past 
perturbed by a time-dependent external field, h(t). In real 
experiments, this external field can be high external 
pressure, which is at some moment turned on and 
increases with time. At time t, this Hamiltonian can be 
expressed as H(t)=H+V(t),where V(t)=h(t) A, and the 
symbol A denotes the parameter of the system with which 
the perturbing external field h(t) is coupled. A common 
example of A is the particle number density.  

As a consequence of the existence of the perturbation 
h(t), the system under study is not “isolated” any more. 
This implies that the average value of the observable 
represented by the operator A depends on the details of the 
perturbing field; solving such a problem is a complicated 
task. This problem can be reduced to the Linear Response 
Theory if the perturbation h is small enough.   

This idea is the foundation of the statistical-
mechanical theory of irreversible processes, proposed by 
Kubo [10]. The aim of this theory is to develop a scheme 
for the calculation of the kinetic coefficients for quantities 
such as the electrical and heat conductivity.  Kubo has 
shown that this calculation can be performed as a 
calculation of time correlation functions in equilibrium. 
From the viewpoint of pure theory, Kubo’s theory solves 
the problem - it gives formal expressions for the required 
physical quantities. However, the expressions it gives are 
far too complex for applicability to real materials.  

Another method applicable to the calculation of the 
kinetic coefficients is the so called “memory function” 
method, recently reviewed in [11]. This method is a 

logical continuation of the work by Kubo. It was 
practically developed in the 1970s, and within this method 
the electrical conductivity can be calculated as follows:  
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where ],[ HjBA == , j  denotes the current operator 
and H  is the Hamiltonian. The symbol �P denotes the 
plasma frequency, which is given by �P

2 = 4 � e2n/m and 
e,n,m are the electron charge, number density and mass. 
 
      

3. Selected applications  
  
3.1 One dimensional organic metals 
 
The generic chemical formula of these materials is 

(TMTSF)2X where (TMTSF)2 denotes a complicated 
chemical compound called di-tetra-meta-tia-selena-
fulvalene, and X  is an anyon. Examples of anyons which 
can be added are: ClO4, NO3 and FSO3. After the name of 
the person who synthetized them for the first time, they 
became known as the Bechgaard salts. For a recent review 
of the field and some history, see [12].  

Full details of the calculation of the electrical 
conductivity of the Bechgaard salts have recently been 
reviewed in [13]. The general conclusion drawn there is 
that the results of the calculation performed within the 
memory function method, using the Hubbard model and 
the Fermi distribution function, are in good semi-
quantitative agreement with experiments. This means that 
the general trend of the experimental data, and some 
numerical values, are successfully reproduced.  

Applications of the Fermi liquid theory to the 
Bechgaard salts are justified by the fact that these 
materials are not strictly one dimensional, but are in fact 
quasi-one-dimensional (Q1D). Recent experimental work 
has shown that at least some of these materials are quasi-
two-dimensional [14].  

The calculation of the electrical conductivity 
discussed in [13] had the disadvantage that the lattice 
constant was assumed to be equal to one. This detail 
helped to simplify the calculation, but at the same time 
excluded the possibility of taking into account the 
influence of variable external pressure on the electrical 
conductivity.  

The first step of the calculation [13] was to obtain an 
expression for the susceptibility χ . This expression has the 
form of a sum. Performing this summation and then letting 
the imaginary part of the complex frequency tend to zero, 
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it can be shown that the electrical conductivity is finally 
given by the following expression: 
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The symbol μ denotes the chemical potential of the 

electron gas, determined in [15] as:  
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In Eqs. (13)-(15), ω0 denotes the real part of the 

frequency, β is the inverse temperature, s the lattice 
constant and n the band filling.  The number of lattice sites 
is denoted by N. The static limit of the conductivity is 
denoted by � 0. Eqs. (13) and (14) give the possibility for 
investigating the dependence of the conductivity on the 
temperature T, band filling  n, frequency ω0 and hopping 
parameter t. However, these equations do not give the 
possibility for taking into account the influence of high 
external pressure on the conductivity.  

As an example of the results obtained on the 
Bechgaard salts by application of Eqs. (13)-(15), the 
following figure gives the temperature dependence of the 
normalized conductivity for two values of the band filling. 

 
Fig. 3. Normalized conductivity of a Bechgaard salt for 

two values of the band filling 
 

The non linearity of the temperature dependence of 
the conductivity is clearly seen, as is the dependence of the 
conductivity on the band filling. This last conclusion has 
an interesting link to experiments. Namely, a band filling 
equal to 1 is usually taken to correspond to a pure 
specimen. Any deviation of n from 1 in fact means that the 
influence of doping on the electrical conductivity is taken 
theoretically into account.   

 
3.2 The conductivity of the Bechgaard salts under  
       high pressure 

 
External pressure changes the value of the lattice 

constant of a material. Therefore, in order to take the 
influence of the pressure on the conductivity of the 
Bechgaard salts into account, the first step is to make a 
change of variables. All terms containing k have to be 
replaced by terms containing ks.  

Summing the expression thus obtained within the first 
Brillouin zone leads to a long impractical result for the real 
part of the susceptibility. It can be expressed as a sum of 
the form 
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where qi are numerical constants and the functions Ai 
contain all the parameters of the problem except the 
frequency. The imaginary part of the dynamical 
susceptibility, denoted by χI, is given by: 
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and P  denotes the principal value of the integral. 
Performing the calculation, it follows that: 
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under the conditions  ω0

2 > 0  and  (ω0 /qi t)2 < 1   
As discussed in [15], the electrical conductivity is 

given by  
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The final result for the real part of the electrical 

conductivity of these materials has the following form:  
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Assuming that the derivative of the plasma frequency 

with pressure is small, it follows that  
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Inserting Eq. (18) into Eq. (21), one gets the following 

general expression for the derivative of the electrical 
conductivity with respect to the lattice constant:   
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This is the general expression for the dependence of 

the electrical conductivity of the Bechgaard salts on the 
lattice constant. The sign of the derivative on the left-hand 
side of Eq. (22) obviously depends on the sign of 
	 
� 	 s. The number of terms which can be taken into 
account in any real application of Eqs. (20) and (22) is 
limited mainly by the available computing power.  

For the purpose of illustrating the applicability of Eq. 
(20), the sum in it was limited to the first 9 terms. The 
conductivity was calculated for the following values of the 
parameters:  N=150; t=0.015; U=4.5 t; ω0 =0.04. The 
conductivity was calculated for different values of the 
lattice constant s. For every value of the lattice constant, 
the temperature at which the maximal value of the 
conductivity, and the value of the conductivity itself, were 
noted. The conductivity was normalized to unity at the 
point s=1; T=116 K. The resulting plots are shown in the 
following two figures. On both figures, the relative 
compression is defined by the relation  
�s/s0=(s0-s)/s0. The starting, arbitrarily chosen, value of 
the lattice constant is denoted by s0. Both figures have 
been prepared for same values of the band filling: n=0.8 
and n=1.2.  

Clearly, for both chosen values of the band-filling, the 
electrical conductivity increases with increasing 
compression. The increase is steeper for a band filling 
smaller than 1. The temperature at which the conductivity 
attains its maximum for a given value of the compression 

diminishes with increasing compression. The decrease is 
again steeper for n=0.8. 

 

 
 

Fig. 4. The maximal conductivity σmax as a function of the 
compression 0/ ssΔ  for two values of the band filling 

 
Fig. 5. The temperature of maximal conductivity Tmaxas a 

function of the compression for two values of the band 
filling, n . 

 

The electrical conductivity of the Bechgaard salts 
under high pressure has been discussed here within the 
one-dimensional Hubbard model. The behaviour of these 
materials is a result of the influence of two competing 
factors, which contribute to the Hamiltonian of the model: 
intersite hopping of the electrons and their localisation on 
the lattice nodes. Both of these factors are pressure 
dependent. The hopping integral t is pressure dependent, 
as its definition contains the overlap of the electronic wave 
functions on two adjacent sites, and the mutual distance of 
the adjacent sites shrinks under increasing pressure. An 
electron localised on a lattice site can be thought of as a 
particle bound in a finite potential well. It is known from 
various studies that such systems tend to get excited and 
finally ionised when exposed to sufficiently high external 
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pressure (for example [16,17] and references therein). This 
result is a theoretical “corner-stone” of an extremely 
successful method for measuring high static pressure [18].  

 
 
3.3 Two dimensional systems 
 
The Hubbard model is most often applied to two 

dimensional systems, by using the so called Determinant 
Quantum Monte Carlo Method, (DQMCM) developed in 
the 1980’s at the University of California at Santa Barbara. 
A brief review of the method is presented in [19] and 
references therein. The calculation of the partition function 
is also discussed therein. Figure 6 shows one of the 
interesting results obtained by applying the DQMCM to 
the 2D Hubbard model -the conductivity is plotted as a 
function of temperature T for various values of the 
disorder strength. � t [20]. 
 

 

Fig. 6. Conductivity dcσ as a function of temperature for 
various values of the disorder parameter � t at U=4  
for<n>=0.5. Calculations are performed on an 8 x 8 
lattice. Data points are averages over 4 realizations of a  
                                given disorder. 

 

Fig. 6 shows the temperature dependence of the 
conductivity of a disordered Hubbard model for various 
values of the parameter � characterizing the disorder. 
Visibly, the shape of the curve changes between �   
�� �  and �   3. This change is interpreted as a sign of 
a metal to insulator transition, driven by disorder. As the 
conductivity is related to the optical properties of a 
material, a similar kind of behaviour can be expected, for 
example, for the reflectivity.   

An interesting conclusion has been reached on the 
behaviour of disordered two dimensional systems in a 
magnetic field. It has been shown [21] that a Zeeman 
magnetic field reduces the conductivity of a conducting 
disordered 2D system, under the assumptions that the 

disorder strength is fixed and that the field is varied. After 
some value of the temperature, the conductivity becomes 
temperature independent. This conclusion was, reached 
theoretically, and only a posteriori related to already 
existing experimental data [22].  To make the results even 
more complex, it turned out in [22] that the value of the 
resistivity at the metal-insulator transition was density 
dependent. This automatically means that it can be “tuned” 
by the application of high external pressure.  

Before the end of this paper, a few words are in order 
on its subject. Namely, so far the word “membrane” has 
not appeared in it, so at first sight it may seem to have 
“missed the subject”. The answer is that membranes 
(biological or artificial) are always two dimensional, so 
everything stated in this paper concerning the 2D 
electronic systems should (in principle at least) be 
applicable to membranes. Similarily, one dimensional 
systems can be viewed as special membranes which have 
their length much bigger than their width. Accordingly, the 
mathematical and physical considerations presented in this 
paper are, perhaps with some small modifications, 
applicable to problems with membranes.  

 
 
4. Conclusions     
 
This paper was prepared with two precise aims: to 

present an, as much as possible, self-contained 
introduction to the basic notions concerning the Hubbard 
model, and to discuss, to a limited extent, its selected 
applications. In the part concerning the Hubbard model 
itself, the motives for its development are explained, and 
expressions are given for the Hamiltonian in the 1D and 
2D cases. Concerning the electrical conductivity, explicit 
expressions are given for it within a particular theoretical 
approach. Accordingly, the interested reader can start a 
calculation of his/her own. The question of the thermal 
conductivity of the Hubbard model has been deliberately 
left out, as it will be the subject of future work. The 
applications discussed refer to 1D and 2D electronic 
systems; as particular examples we have considered the 
Q1D organic metals and 2D electronic systems. In the 1D 
case, this paper contains results on the electrical 
conductivity of the Bechgaard salts, at first without and 
then with taking into account the influence of high 
external pressure on their conductivity. Both 1D and 2D 
electronic systems can be considered as special cases of 
membranes. In closing, note that although the Hubbard 
model was proposed near the middle of the last century, 
and solved for the 1D case back in 1968, it offers 
numerous possibilities for active research work. It is hoped 
that this paper will contribute to the spread of interest in 
this model and its applicability.  
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